
Supplementary Table 1: Simulation parameters (see excel file). (a)-(e) correspond to
Tables S2-S6 respectively.
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Description pMR < α pEgger < α pMed < α pMBE < α pbi-MR < α paux < α pLCV < α ˆgcp ρ̂g
a Default 0.056 0.044 0.118 0.094 0.047 0.002 0 -0.001 0.001
b Uncorrelated pleiotropy 0.048 0.054 0.161 0.117 0.049 0.01 0 0.005 -0.001
c Strong uncorrelated pleiotropy 0.046 0.06 0.248 0.098 0.064 0.01 0 0 0
d Weak uncorrelated pleiotropy 0.04 0.053 0.148 0.092 0.052 0.006 0 0 0.001
e Nonzero genetic correlation 1 0.211 0.958 0.096 0.054 0.032 0.018 -0 0.2
f High genetic correlation 1 0.401 1 0.06 0.053 0.054 0.022 -0.001 0.4
g Very high genetic correlation 1 0.896 1 1 0.051 0.06 0.026 -0.002 0.8
h Unequal polygenicity 1 0.933 0.995 0.072 0.862 0.104 0.038 -0.002 0.2
i Very unequal polygenicity 1 0.983 1 0.999 1 0.368 0.038 -0.003 0.199
j Slightly unequal polygenicity 1 0.527 0.972 0.104 0.187 0.034 0.029 -0.001 0.2
k Unequal power 1 0.809 1 0.974 0.892 1 0.061 -0.001 0.2
l Very unequal power 1 0.834 1 0.97 0.971 1 0.049 -0 0.199
m Slightly unequal power 1 1 1 0.034 0.804 1 0.03 0 0.199

Supplementary Table 2: Comparison with existing methods in null simulations with no LD. Five types of MR methods
(two-sample MR, MR-Egger, Weighted Median, Mode-based Estimator and Bidirectional MR) are used, as well as
LCV and the auxiliary test. The proportion of simulations out of n = 1000 with p < 0.05 is reported. (a) Default
parameters with no pleiotropy: sample size N1 = N2 = 100k; number of SNPs M = 50k; 5% of SNPs causal for each
trait, 0 SNPs causal for both traits. (b) 1% of SNPs are pleiotropic, with uncorrelated effect sizes on each trait; 4%
of SNPs are causal for each trait exclusively. Average effect size is identical for pleiotropic and non-pleiotropic SNPs.
(c) 2.5% of SNPs are pleiotropic; 2.5% of SNPs are causal for each trait exclusively. (d) 0.5% of SNPs are pleiotropic;
4.5% of SNPs are causal for each trait exclusively. (e) Genetic correlation of 0.2. 1% of SNPs are pleiotropic, with
identical effect sizes on both traits; 4% of SNPs are causal for each trait exclusively. Note that none of the methods
are expected to perform differently when the genetic correlation is negative instead of positive. (f) Genetic correlation
of 0.4. 2% of SNPs are pleiotropic; 3% of SNPs are causal for each trait exclusively. (g) Genetic correlation of 0.8.
4% of SNPs are pleiotropic; 1% of SNPs are causal for each trait exclusively. (h) Unequal polygenicity, in addition to
a genetic correlation of 0.2: 1% of SNPs causal for both traits, 8% of SNPs causal for trait 1 only, 2% of SNPs causal
for trait 2 only. (i) Unequal polygenicity, in addition to a genetic correlation of 0.2: 1% of SNPs causal for both traits,
16% of SNPs causal for trait 1 only, 1% of SNPs causal for trait 2 only. (j) Unequal polygenicity, in addition to a
genetic correlation of 0.2: 1% of SNPs causal for both traits, 5% of SNPs causal for trait 1 only, 3% of SNPs causal for
trait 2 only. (k) Unequal power, in addition to a genetic correlation of 0.2: N = 50k for trait 1, N = 200k for trait 2.
In addition, polygenicity is unequal for pleiotropic and non-pleiotropic SNPs (but equal between each trait): 0.5% of
SNPs are causal for both traits, and 8% of SNPs are causal for each trait exclusively. (l) Unequal power, in addition
to a genetic correlation of 0.2 and unequal polygenicity between pleiotropic and non-pleiotropic SNPs: N = 50k for
trait 1, N = 400k for trait 2. (m) Unequal power, in addition to a genetic correlation of 0.2 and unequal polygenicity
between pleiotropic and non-pleiotropic SNPs: N = 100k for trait 1, N = 200k for trait 2. We note that the weighted
median method produced slightly inflated false positive rates even in the absence of a genetic correlation; this behavior
may be due to miscalibrated standard errors, which are computed using a parametric bootstrap approach.
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Description pMR < α pEgger < α pMed < α pMBE < α pbi-MR < α paux < α pLCV < α ˆgcp ρ̂g
a Default parameters 0.316 0 0.052 0 0.039 0.984 0.995 0.698 0.201
b Low N1 0.001 0.001 0 0 0 0.006 0.886 0.646 0.199
c Very low N1 0 0 0 0 0 0.077 0.553 0.52 0.205
d High N1 1 0.007 0.981 0.004 0.076 1 1 0.748 0.201
e Low N2 0.127 0.003 0.054 0 0 0.975 0.789 0.607 0.2
f Very low N2 0.037 0.002 0.058 0 0 0.535 0.302 0.39 0.202
g High N2 0.656 0.001 0.042 0 0.268 0.252 0.999 0.744 0.202
h Small effect size 0.029 0 0.001 0 0.008 0.267 0.081 0.466 0.099
i Very small effect size 0.002 0.002 0.001 0 0.002 0.007 0 0.217 0.052
j Large effect size 0.927 0.005 0.723 0.012 0.064 1 1 0.856 0.401
k High polygenicity 0.002 0 0.001 0 0.001 0.58 0.46 0.566 0.202
l Very high polygenicity 0 0 0 0 0 0.136 0.018 0.375 0.201
m Low polygenicity 0.999 0.008 0.856 0 0.191 1 1 0.782 0.201
n Pleiotropy 0.138 0.004 0.076 0 0.008 0.618 0.793 0.351 0.2
o Strong pleiotropy 0.087 0 0.09 0 0 0.179 0.493 0.22 0.199
p Partial causality (gcp=0.75) 0.034 0 0.014 0.001 0.01 0.774 0.809 0.607 0.2
q Partial causality (gcp=0.5) 0.004 0 0 0 0.003 0.282 0.277 0.486 0.198
r Partial causality (gcp=0.25) 0 0.001 0.001 0 0.002 0.04 0.029 0.296 0.2

Supplementary Table 3: Comparison with existing methods in non-null simulations with no LD. Five types of MR
methods (two-sample MR, MR-Egger, Weighted Median, Mode-based Estimator and Bidirectional MR) are compared
with LCV and the auxiliary test, and the proportion of simulations out of n = 1000 with p < 0.001 is reported. (a)
Causal simulation with default parameters: sample size N1 = N2 = 25k; number of SNPs M = 50k; 5% of SNPs causal
for trait 1, with a causal effect of size 0.2 on trait 2; 5% of SNPs causal for trait 2 but not trait 1; heritability of 0.2
for both traits. (b) Lower sample size for trait 1 (the causal trait): N1 = 12.5k, N2 = 25k. (c) Lower sample size for
trait 1 (the causal trait): N1 = 6.2k, N2 = 25k. (d) Higher sample size for trait 1: N1 = 50k, N2 = 25k. (e) Lower
sample size for trait 2: N1 = 12.5k, N2 = 25k. (f) Lower sample size for trait 2: N1 = 25k, N2 = 6.2k. (g) Higher sample
size for trait 2: N1 = 25k, N2 = 50k. (h) Smaller causal effect size of 0.1. (i) Very small causal effect size of 0.05. (j)
Large causal effect size of 0.4. (k) Higher trait 1 polygenicity: 10% of SNPs are causal for trait 1, and an additional
5% of SNPs are causal for trait 2. (l) Very high trait 1 polygenicity: 20% of SNPs are causal for trait 1, and an
additional 5% of SNPs are causal for trait 2. Lower trait 1 polygenicity: 2.5% of SNPs are causal for trait 1, and an
additional 5% of SNPs are causal for trait 2. (m) Additional pleiotropy: 2.5% of SNPs are causal for both traits with
extra effects on trait 2 in addition to the component of their effects which is mediated by trait 1. 2.5% of SNPs are
causal for trait 1 with mediated effects (but no additional pleiotropic effects) on trait 2, and 2.5% of SNPs are causal
for trait 2 only. (o) Strong additional pleiotropy: all SNPs affecting trait 1 (5% of SNPs) have additional pleiotropic
non-mediated effects on trait 2; no SNPs affect trait 2 only (or trait 1 only). (p) Partial genetic causality, with a gcp
of 0.75 and a genetic correlation of 0.2. (q) Partial genetic causality, with a gcp of 0.5 and a genetic correlation of 0.2.
Partial genetic causality, with a gcp of 0.25 and a genetic correlation of 0.2.
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Description pMR < α pEgger < α pMed < α pMBE < α pbi-MR < α paux < α pLCV < α ˆgcp ρ̂g
a No pleiotropy 0.054 0.044 0.137 0.098 0.053 0.002 0 0.001 -0.001
b Low genetic correlation 1 0.182 0.277 0.088 0.04 0.017 0.011 0.001 0.07
c Nonzero genetic correlation 1 0.344 0.968 0.086 0.043 0.023 0.034 -0.001 0.142
d High genetic correlation 1 0.612 1 0.041 0.026 0.032 0.022 0.001 0.283
e Very high genetic correlation 1 0.979 1 0.876 0.023 0.032 0.029 -0.002 0.566
f Slightly unequal polygenicity 1 0.049 0.973 0.075 0.13 0.037 0.033 -0 0.141
g Unequal polygenicity 1 0.334 0.992 0.086 0.748 0.103 0.034 0.001 0.141
h Very unequal polygenicity 1 0.979 0.999 0.075 0.999 0.414 0.045 0.001 0.141
i Slightly unequal power 1 0.973 0.999 0.006 0.783 0.97 0.036 0.001 0.142
j Unequal power 0.99 0.202 0.99 0.565 0.439 1 0.058 0.002 0.141
k Very unequal power 0.997 0.203 0.986 0.577 0.773 1 0.039 0.001 0.141

l Causal with weak pleiotropy 0.104 0.005 0.007 0 0.029 0.699 0.535 0.551 0.141
m Causal with pleiotropy 0.109 0 0.008 0 0.031 0.652 0.577 0.554 0.143
n Causal with very strong pleiotropy 0.074 0.001 0.015 0 0.013 0.432 0.498 0.494 0.141

Supplementary Table 4: Simulations with no LD under Gaussian mixture models. Five types of MR methods (two-
sample MR, MR-Egger, Weighted Median, Mode-based Estimator and Bidirectional MR) are compared with LCV and
the auxiliary test, and the proportion of simulations, out of n = 1000, with p < α is reported, where α = 0.05 for null
simulations (top) and α = 0.001 for causal simulations (bottom). Mean estimated gcp and genetic correlation (ρg) are
also reported. (a) Null simulation with no pleiotropy. 5% of SNPs are causal for each trait. (b) Null simulation with
a low genetic correlation (ρg =

√
2/20). 1% of SNPs are causal for both traits with correlated effects (r2 = 0.5), and

4% of SNPs are causal for each trait exclusively. (c) Null simulation with a medium genetic correlation (ρg =
√

2/10)
(corresponds to Supplementary Figure 1a). (d) Null simulation with a high genetic correlation (ρg =

√
2/5). (e) Null

simulation with a very high genetic correlation (ρg = 2
√

2/5). (f) Null simulation with slightly unequal polygenicity
between the two traits. 1% of SNPs are causal for both traits with correlated effects (r2 = 0.5), 3% of SNPs are
causal for trait 1 exclusively, and 5% of SNPs are causal for trait 2 exclusively. (g) Null simulation with moderately
unequal polygenicity between the two traits (corresponds to Supplementary Figure 1b). 2% of SNPs are causal for
trait 1 exclusively, and 8% of SNPs are causal for trait 2 exclusively. (h) Null simulation with very unequal polygenicity
between the two traits. 1% of SNPs are causal for trait 1 exclusively, and 16% of SNPs are causal for trait 2 exclusively.
(i) Null simulation with slightly unequal power between the two traits. 0.5% of SNPs are causal for both traits with
correlated effects (r2 = 0.5), and 8% of SNPs are causal for each trait exclusively. Sample sizes is N1 = 50k and
N2 = 100k. (j) Null simulation with moderately unequal power between the two traits (corresponds to Supplementary
Figure 1c) (N1 = 25k, N2 = 100k). (k) Null simulation with very unequal power between the two traits (N1 = 25k,
N2 = 400k). (l) Causal simulation with weak additional pleiotropic effects. 1% of SNPs were causal for both traits,
with correlated effect sizes (r2 = 2/3); 4% of SNPs were causal for trait 2 exclusively, and 0% of SNPs were causal for
trait 1 exclusively. (m) Causal simulation with moderately strong additional pleiotropic effects (r2 = 0.5 between effect
sizes of correlated SNPs). (n) Causal simulation with very strong additional pleiotropic effects (r2 = 0.125 between
effect sizes of correlated SNPs).
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Description pMR < α pEgger < α pMed < α pMBE < α pbi-MR < α paux < α pLCV < α ˆgcp ρ̂g
a Equal polygenicity 1 0.83 1 0.018 0.027 0.03 0.014 -0 0.458
b Slightly unequal polygenicity 1 0.964 1 0.023 0.766 0.176 0.975 0.176 0.459
c Unequal polygenicity 1 1 1 0.247 1 0.912 1 0.422 0.459
d Very unequal polygenicity 1 1 1 0.088 1 1 1 0.514 0.459
e Equal polygenicity, N=500k 1 1 1 0.06 0.011 0.002 0.014 0 0.458
f Slightly unequal polygenicity, N=500k 1 1 1 0.063 0.047 0.01 0.995 0.177 0.458
g Unequal polygenicity, N=500k 1 1 1 0.065 0.474 0.081 1 0.421 0.458
h Very unequal polygenicity, N=500k 1 1 1 0.064 0.918 0.369 1 0.514 0.458

i Causal with weak confounder 0.999 0.016 0.89 0 0.246 1 1 0.81 0.282
j Causal with confounder 0.995 0.005 0.728 0.001 0.085 0.997 0.999 0.649 0.36
k Causal with strong confounder 0.937 0 0.763 0 0.001 0.817 0.489 0.284 0.521

Supplementary Table 5: Simulations with no LD under multiple intermediary models. Five types of MR methods (two-
sample MR, MR-Egger, Weighted Median, Mode-based Estimator and Bidirectional MR) are compared with LCV and
the auxiliary test, and the proportion of simulations, out of n = 1000, with p < α is reported, where α = 0.05 for null
simulations (top) and α = 0.001 for causal simulations (bottom). Mean estimated gcp and genetic correlation (ρg) are
also reported. (a) Null simulation with two intermediaries having equal polygenicity (corresponds to Supplementary
Figure 1d). The first intermediary explains 15% and 35% of heritability for trait 1 and trait 2 respectively, and the
second intermediary explains 35% and 15% respectively. 2% of SNPs are causal for each intermediary. In all null
simulations in this table, 4% of SNPs are causal for each trait exclusively. (b) Null simulation with two intermediaries
having slightly unequal polygenicity. 2% and 4% of SNPs are causal for each intermediary respectively. (c) Null
simulation with two intermediaries having unequal polygenicity (corresponds to Supplementary Figure 1e). 1% and
8% of SNPs are causal for each intermediary respectively. (d) Null simulation with two intermediaries having very
unequal polygenicity. 0.5% and 16% of SNPs are causal for each intermediary respectively. (e-h) Null simulations
similar to (a-d), but at higher sample size (N = 500k instead of N = 100k). (i) Causal simulation with an additional
latent variable explaining a small proportion of the genetic correlation. 2% of SNPs are causal for trait 1 with
proportional effects on trait 2 (causal effect size: q2 = 0.2); 2% of SNPs are causal for both traits via the additional
latent variable, explaining 10% of heritability for each 2 exclusively. (j) Causal simulation with an additional latent
variable explaining approximately half of the genetic correlation. The additional latent variable explains 20% of
heritability for each trait. (k) Causal simulation with an additional latent variable explaining a large proportion of
the genetic correlation (corresponds to Supplementary Figure 1g). The additional latent variable explains 40% of
heritability for each trait.

5



ρg p < .05 p < .001 Mean χ2 Mean ˆgcp ˆgcp std dev RMS σ̂ Zh

a Zero genetic correlation 0 0 0 0.32 -0.00 0.11 0.55 8
b Low genetic correlation 0.1 0.009 0 0.58 0.00 0.14 0.29 8.5
c Default parameter values 0.2 0.058 0.003 1.09 -0.00 0.07 0.08 8.6
d High genetic correlation 0.4 0.067 0.004 1.2 -0.00 0.1 0.11 8
e Very high genetic correlation 0.8 0.058 0.002 1.13 -0.00 0.21 0.24 5.8
f Uncorrelated pleiotropic effects 0.2 0.054 0.001 1.06 -0.00 0.08 0.09 8.7
g Differential polygenicity 0.2 0.062 0.002 1.1 -0.01 0.08 0.08 10
h Very different polygenicity 0.2 0.067 0.004 1.19 -0.01 0.1 0.1 11.2
i Low N1 0.2 0.063 0.004 1.14 0.01 0.12 0.13 5
j Very low N1 0.2 0.228 0.132 11.2 0.11 0.35 0.33 1.4
k Different heritability 0.2 0.061 0.005 1.7 0.00 0.09 0.1 6.5
l High phenotypic correlation 0.2 0.057 0.002 1.12 0.00 0.07 0.08 8.7

m Zero phenotypic correlation 0.2 0.057 0.005 1.1 0.00 0.07 0.08 8.6
n Uncorrelated pleiotropic effects 0 0.001 0 0.3 0.00 0.14 0.52 8
o Differential polygenicity 0 0 0 0.31 -0.02 0.12 0.55 9.8
p Very different polygenicity 0 0.001 0 0.31 -0.05 0.14 0.52 11.4
q Low N1 0 0.001 0.001 0.31 0.00 0.14 0.52 5
r Very low N1 0 0.272 0.216 46.4 0.27 0.32 0.39 1.4
s Different heritability 0 0 0 0.28 -0.00 0.11 0.55 6.3
t Causal 0.2 0.965 0.94 258 0.76 0.12 0.16 8.6
u Partially causal 0.2 0.706 0.347 12.9 0.56 0.15 0.24 10
v Low N1 0.2 0.852 0.768 66 0.65 0.17 0.2 5.1
w Very low N1 0.2 0.452 0.378 102 0.39 0.35 0.35 1.4
x Low N2 0.2 0.843 0.714 40.8 0.60 0.18 0.21 8.7
y Weak causal effect 0.1 0.422 0.104 6.36 0.49 0.18 0.32 8.7
z Y1 less polygenic 0.2 0.997 0.996 7331 0.90 0.08 0.07 3.6
aa Y1 more polygenic 0.2 0.155 0.004 2.39 0.28 0.2 0.47 13.3
bb Y1 infinitessimal 0.2 0.012 0 0.7 0.07 0.2 0.5 14.2
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Supplementary Table 6: Additional simulations with LD. Proportion of simulations
(out of n = 5000) with LCV p-value for partial causality less than 0.05 and less than
0.001; mean χ2 statistic; mean ˆgcp (in each case, standard error is less than 0.01);
empirical standard deviation of ˆgcp; root mean squared estimated standard error; mean
heritability Z-score for trait 1. Simulations a-s are null (gcp = 0), and simulations t-bb
are non-null. (a-e) Different values of the genetic correlation (ρg). When the genetic
correlation is zero or near-zero, we observe conservative p-values and overestimates of
the ˆgcp standard error. (f) Uncorrelated pleiotropic effects: 0.3% of SNPs affect both
traits with independent effect sizes. (g-h) Differential or very different polygenicity:
0.2% and 0.8% of SNPs, or 0.1% and 1.6% of SNPs respectively, have direct effects on
each trait. (i-j) Low or very low sample size for trait 1: either N1 = 20k or N1 = 4k
respectively, and N2 = 100k. (k) Different heritability: h2

1 = 0.1 and h2
2 = 0.5. (l)

High phenotypic correlation of 0.4, compared with ρg = 0.2. (m) Zero phenotypic
correlation. (n) Uncorrelated pleiotropic effects: 0.3% of SNPs affect both traits with
independent effect sizes. (o-p) Differential or very different polygenicity: 0.2% and
0.8% of SNPs, or 0.1% and 1.6% of SNPs respectively, have direct effects on each trait.
(q-r) Low or very low sample size for trait 1: either N1 = 20k or N1 = 4k respectively,
and N2 = 100k. (s) Different heritability: h2

1 = 0.1 and h2
2 = 0.5. (t) Causal. (u)

Partially causal (gcp = 0.5). (v-w) Causal, with low or very low sample size for the
causal trait (N1 = 20k or N1 = 4k, and N2 = 100k). (x) Causal, with low sample size in
the downstream trait (N2 = 20k, N1 = 100k). (y) Weak causal effect (0.1 rather than
0.25). (z-bb) Varying polygenicity for the causal trait: instead of 0.5% of SNPs causal,
either 0.05%, 5%, or 100% of SNPs causal for z-bb respectively.
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ρg p < .05 p < .001 Mean χ2 Mean ˆgcp ˆgcp std dev RMS σ̂ Zh

a Default parameter values 0.2 0.034 0 0.9 0.00 0.05 0.06 16.7
b Zero genetic correlation 0 0.001 0 0.31 -0.00 0.11 0.55 15.3
c Very high genetic correlation 0.8 0.033 0.002 0.94 -0.00 0.11 0.43 10.9
d Uncorrelated pleiotropic effects 0.2 0.032 0.000 0.87 -0.00 0.06 0.09 16.6
e Differential polygenicity 0.2 0.034 0.002 0.86 -0.00 0.05 0.07 19.3
f Low N1 0.2 0.042 0.002 0.9 0.00 0.1 0.12 8.7
g Very low N1 0.2 0.254 0.16 19.96 0.08 0.35 0.32 2.2
h Causal 0.2 0.968 0.943 257.17 0.76 0.11 0.16 16.5
i Partially causal 0.2 0.765 0.369 12.54 0.57 0.15 0.23 19.2

Supplementary Table 7: Simulations with LD using constrained-intercept LD score
regression to estimate the heritability. This heritability estimation method is less
noisy than variable-intercept LD score regression but can produce biased estimates
on real data due to population stratification and cryptic relatedness.19 Proportion
of simulations (out of n = 2000) with p-value for partial causality less than .05 and
less than .001; mean χ2 statistic for partial causality; mean ˆgcp; standard deviation
of gcp estimates; root-mean squared estimated standard error. Simulations a-f are
null (gcp = 0), and simulations g-h are non-null. (a) Realistic simulation parameters
(see Methods). (b) Genetic correlation ρg = 0. (c) Genetic correlation ρg = 0.75.
(d) Uncorrelated pleiotropic effects in addition to a genetic correlation: 50% of SNPs
with direct (non-mediated) effects on each trait are shared between the two traits. (e)
Differential polygenicity: 0.2% and 0.05% of SNPs have direct effects on each trait. (f)
Different sample size: N1 = 1000k and N2 = 500k. (g) Different sample size: N1 = 20k
and N2 = 500k. (h) Full genetic causality: gcp = 1, with causal effect equal to the
genetic correlation (0.25). (i) Partial genetic causality: gcp = 0.5.

Ground truth PC corrected pLCV < .05 pLCV < .001 median ˆgcp
a Uncorrelated 0 0.58 0.38 -0.49
b Non-causal correlated 0 0.34 0.13 -0.22
c Uncorrelated 1 0.006 0 0.00
d Non-causal correlated 1 0.056 0.006 0.02
e Causal 0 0.22 0.078 0.05
f Causal corrected 1 0.99 0.90 0.78

Supplementary Table 8: Confounding due to population stratification and correction
for stratification using PCA. Simulations were performed using UK Biobank genotypes
for chromosome 1, with environmental stratification added along PC1 explaining 1%
of variance for trait 1 and 2% for trait 2. LCV was applied to summary statistics
before and after correction for PC1, either when Y1 was causal for Y2, when Y1 and Y2

were genetically correlated with no partial causality, or when Y1 and Y2 had no genetic
correlation. Based on n = 500 simulations.
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Regression coefficient (std err) RMSE RMPV
Ascertained simulations (43%) 0.97 (.004) 0.15 0.13
All simulations 1.00 (.005) 0.24 0.20

Supplementary Table 9: Unbiasedness of estimated gcp and standard error in simula-
tions with random true parameter values, using real LD. We drew random values of
gcp (and ρg) from a Unif(−1,1) distribution and compared true and estimated values
of gcp, either for all n = 10,000 simulations or for a subset (43%) of simulations in
which the genetic correlation was nominally significant p < 0.05 and the evidence for
partial causality was strong (p < 0.001). We report the regression coefficient of true on
estimated gcp values with standard error, as well as the root mean squared error and
the root mean posterior variance estimate.

Phenotype Reference N (thousands) Zh

Anorexia Boraska et al., 2014 Mol Psych 32 17.8
Autism Spectrum PGC Cross-Disorder Group, 2013 Lancet 10 12.1
Bipolar Disorder BIP Working Group of the PGC, 2011 Nat Genet 17 11.8
Breast Cancer Amos et al., 2016 Cancer Epidemiol. Biomarkers Prev. ∼ 447* 16
Celiac Disease Dubois et al., 2010 Nat Genet 15 10.4
Crohns Disease Jostins et al., 2012 Nature 21 12.1

Depressive symptoms Okbay et al., 2016 Nat Genet 161 13.1
HDL Teslovich et al., 2010 Nature 98 8.2

HbA1c Soranzo et al., 2010 Diabetes 46 8.8
LDL Teslovich et al., 2010 Nature 93 8.1

Lupus Bentham et al., 2015 Nat Genet 14 10.2
Prostate Cancer Amos et al., 2016 Cancer Epidemiol. Biomarkers Prev. ∼ 447* 7.5
Schizophrenia SCZ Working Group of the PGC, 2014 Nature 70 17.4
Triglycerides Teslovich et al., 2010 Nature 94 9.5

Ulcerative Colitis Jostins et al., 2012 Nature 27 8.8
Eosinophil count † UK Biobank 27–29 ∼ 460** 20.8

Reticulocyte count † UK Biobank 27–29 ∼ 460 19.9
Lymphocyte count † UK Biobank 27–29 ∼ 460 22.7

Mean corpuscular hemoglobin † UK Biobank 27–29 ∼ 460 14.3
Mean platelet volume † UK Biobank 27–29 ∼ 460 15.7

Monocyte count † UK Biobank 27–29 ∼ 460 15.1
Platelet count † UK Biobank 27–29 ∼ 460 20.2

Platelet distribution width † UK Biobank 27–29 ∼ 460 17.1
RBC distribution width † UK Biobank 27–29 ∼ 460 19.7

RBC count † UK Biobank 27–29 ∼ 460 17.5
White cell count † UK Biobank 27–29 ∼ 460 20.7

Bone mineral density - heel † UK Biobank 27–29 ∼ 460 29
Balding - male*** † UK Biobank 27–29 ∼ 230 16.1

BMI † UK Biobank 27–29 ∼ 460 27.5
Height † UK Biobank 27–29 ∼ 460 24.7

BP - diastolic † UK Biobank 27–29 ∼ 460 32.3
BP - systolic † UK Biobank 27–29 ∼ 460 28.3

College † UK Biobank 27–29 ∼ 460 19.1
Smoking status † UK Biobank 27–29 ∼ 460 24.9

Eczema † UK Biobank 27–29 ∼ 460 21.8
Asthma † UK Biobank 27–29 ∼ 460 16.8
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Dermatology † UK Biobank 27–29 ∼ 460 9.1
Myocardial infarction**** UK Biobank 27–29 ∼ 460 18.6

High cholesterol † UK Biobank 27–29 ∼ 460 15.6
Hypertension † UK Biobank 27–29 ∼ 460 36.2

Hypothyroidism † UK Biobank 27–29 ∼ 460 20.1
Type 2 Diabetes † UK Biobank 27–29 ∼ 460 19.5

Basal metabolic rate † UK Biobank 27–29 ∼ 460 23.4
FEV1/FVC † UK Biobank 27–29 ∼ 460 17.7

FVC † UK Biobank 27–29 ∼ 460 18.8
Neuroticism † UK Biobank 27–29 ∼ 460 28.7

Morning person † UK Biobank 27–29 ∼ 460 21.1
Age at menarche † UK Biobank 27–29 ∼ 230 24

Age at menopause † UK Biobank 27–29 ∼ 230 19.1
Number children - female UK Biobank 27–29 ∼ 230 14.4
Number children - male UK Biobank 27–29 ∼ 230 15.1

Supplementary Table 10: 52 GWAS datasets included in the analysis. Most UK
Biobank summary statistics are publicly available.29 All datasets have heritability
Z-score Zh > 7 and estimated genetic correlation ρ̂g < 0.9 with other traits. Sum-
mary statistics for ∼ 1,000,000 HapMap3 SNPs were used, excluding the MHC region.
*Total number of samples genotyped by OncoArray; actual sample size is slightly less
than 447k. These numbers are excluded from average reported sample size for non-UK
Biobank traits. **Actual sample size for UK Biobank analyses is slightly less than 460k
(respectively 230k for sex-specific traits), owing to incomplete phenotype data. For
most case control traits, effective sample size is substantially less than 460k due to the
low fraction of cases. ***The balding phenotype was the “balding 4” UK Biobank cate-
gory, corresponding to nearly-complete baldness. ****We confirmed that self-reported
MI in UK Biobank was highly genetically correlated with CAD in CARDIoGRAM con-
sortium data39 (ρg = 1.34(0.25); not significantly different from 1). †Summary statis-
tics publicly available at https://data.broadinstitute.org/alkesgroup/UKBB/.
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Trait 1 Trait 2 pLCV ρ̂g (std err) ˆgcp(std err) paux MR ref
Triglycerides Hypertension 5 × 10−39 0.25 (0.04) 0.95 (0.04) 0.04

BMI Heart attack 3 × 10−9 0.34 (0.09) 0.94 (0.11) 0.22 32,38
Triglycerides Heart attack 8 × 10−32 0.30 (0.06) 0.90 (0.08) 0.04 4
Triglycerides BP - systolic 6 × 10−41 0.13 (0.03) 0.89 (0.08) 8 × 10−4

HDL Hypertension 6 × 10−22 -0.29 (0.06) 0.87 (0.09) 0.15
LDL High cholesterol 8 × 10−7 0.77 (0.07) 0.86 (0.11) 0.08

Triglycerides Mean cell volume 10 × 10−19 -0.20 (0.04) 0.86 (0.11) 2 × 10−4

Triglycerides BP - diastolic 5 × 10−39 0.11 (0.04) 0.86 (0.10) 0.004
Platelet volume Platelet count 6 × 10−10 -0.66 (0.03) 0.84 (0.10) 0.18

BMI Hypertension 2 × 10−16 0.38 (0.03) 0.83 (0.11) 0.06 11,38
Triglycerides Platelet dist width 5 × 10−17 0.19 (0.04) 0.81 (0.13) 7 × 10−5

LDL BMD 4 × 10−34 -0.12 (0.05) 0.80 (0.12) 0.02
BMI FVC 4 × 10−13 -0.22 (0.03) 0.79 (0.17) 0.001 72

Triglycerides Reticulocyte count 2 × 10−10 0.33 (0.05) 0.79 (0.14) 0.02
Triglycerides Eosinophil count 3 × 10−17 0.14 (0.05) 0.75 (0.16) 0.001

Balding - male Num children - male 2 × 10−30 -0.16 (0.05) 0.75 (0.13) 2 × 10−4

HDL Platelet dist width 8 × 10−17 -0.14 (0.04) 0.75 (0.16) 0.004
RBC dist width Type 2 Diabetes 3 × 10−4 0.11 (0.03) 0.73 (0.19) 0.21

LDL Heart attack 2 × 10−31 0.17 (0.08) 0.73 (0.13) 6 × 10−4 3,13
Platelet dist width Platelet count 1 × 10−7 -0.47 (0.04) 0.73 (0.15) 0.04

Hypothyroidism Type 2 Diabetes 2 × 10−4 0.22 (0.05) 0.73 (0.29) 0.2
HDL Type 2 Diabetes 2 × 10−7 -0.40 (0.06) 0.72 (0.17) 0.35

Hypothyroidism Heart attack 6 × 10−12 0.26 (0.05) 0.72 (0.16) 0.08
High cholesterol Heart attack 2 × 10−4 0.52 (0.12) 0.71 (0.19) 0.32

HDL BP - diastolic 4 × 10−17 -0.12 (0.06) 0.70 (0.18) 0.005
Platelet dist width Reticulocyte count 1 × 10−7 0.13 (0.04) 0.69 (0.20) 0.005

LDL College 1 × 10−10 -0.13 (0.05) 0.68 (0.30) 0.35
Triglycerides Monocyte count 1 × 10−4 0.14 (0.04) 0.67 (0.21) 0.09

Type 2 Diabetes Ulcerative Colitis 2 × 10−5 -0.14 (0.07) 0.65 (0.23) 0.41
BMI Reticulocyte count 4 × 10−5 0.39 (0.03) 0.64 (0.25) 10 × 10−4

HDL FEV1/FVC 1 × 10−13 -0.09 (0.04) 0.56 (0.08) 0.19
High cholesterol Neuroticism 2 × 10−14 0.09 (0.03) 0.55 (0.19) 0.32

Triglycerides Basal metab rate 2 × 10−8 0.08 (0.04) 0.55 (0.13) 0.25
Height BMD 3 × 10−14 -0.09 (0.04) 0.50 (0.14) 2 × 10−8

Triglycerides Height 3 × 10−14 -0.10 (0.03) 0.45 (0.09) 0.15
HbA1C High cholesterol 5 × 10−22 0.25 (0.06) 0.44 (0.16) 0.49

Age at menarche Height 7 × 10−11 0.16 (0.04) 0.43 (0.10) 2 × 10−5 11
High cholesterol Smoking status 5 × 10−19 0.13 (0.03) 0.42 (0.02) 0.52

Reticulocyte count Hypertension 2 × 10−4 0.27 (0.04) 0.41 (0.13) 0.75
BMI Asthma 4 × 10−14 0.21 (0.03) 0.40 (0.27) 0.05 72

High cholesterol Monocyte count 4 × 10−4 0.09 (0.03) 0.40 (0.15) 0.2
Height Basal metab rate 10 × 10−9 0.57 (0.03) 0.39 (0.07) 0.006
Eczema FEV1/FVC 2 × 10−15 -0.08 (0.03) 0.36 (0.10) 2 × 10−5

Height College 3 × 10−6 0.17 (0.03) 0.33 (0.10) 0.06 71
Prostrate cancer Hypothyroidism 10 × 10−5 -0.12 (0.05) 0.30 (0.38) 0.19
Crohns Disease LDL 4 × 10−13 -0.12 (0.06) 0.29 (0.15) 0.82
High cholesterol Type 2 Diabetes 4 × 10−6 0.42 (0.05) 0.24 (0.30) 0.62

RBC count Monocyte count 8 × 10−7 0.14 (0.05) 0.24 (0.46) 0.31
HbA1C BMI 7 × 10−17 0.25 (0.05) 0.23 (0.35) 0.77

Basal metab rate Hypothyroidism 6 × 10−21 0.11 (0.04) 0.21 (0.04) 0.04
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Platelet dist width Corpuscular hemoglobin 5 × 10−14 -0.06 (0.02) 0.15 (0.14) 0.08
Depressive syndrome Asthma 4 × 10−4 0.21 (0.05) 0.14 (0.08) 0.37

BMI High cholesterol 2 × 10−6 0.33 (0.06) 0.13 (0.12) 0.25
Age at menopause Depressive syndrome 2 × 10−7 -0.27 (0.06) 0.12 (0.32) 0.41
White cell count BMI 7 × 10−5 0.24 (0.03) 0.09 (0.16) 1

Asthma Lymphocyte count 2 × 10−4 0.09 (0.04) 0.08 (0.19) 0.57
Num children - male Hypothyroidism 9 × 10−11 0.18 (0.05) 0.03 (0.26) 0.87

College High cholesterol 2 × 10−8 -0.23 (0.03) 0.01 (0.08) 0.34
RBC dist width High cholesterol 4 × 10−4 0.11 (0.04) 0.00 (0.17) 0.35

Supplementary Table 11: Pairs of traits with evidence of partial genetic causality. We
restricted to pairs of traits having a nominally significant genetic correlation (two-
tailed p < 0.05; 429 trait pairs) and reported all traits with strong evidence of partial
causality (1% FDR). Trait pairs are ordered so that trait 1 is genetically causal or
partially genetically causal for trait 2. We have provided references for each trait pair
with existing support in the MR literature that we are aware of. For some trait pairs,
there was strong evidence for partial causality but low and noisy gcp estimates. This
phenomenon may occur due to multiple intermediaries, which can cause the estimated
mixed fourth moments to have opposite signs. When this occurs, the approximate
likelihood function is sometimes bimodal, with no support for any specific value of
gcp (because there is no value of gcp that produces mixed fourth moments of opposite
signs). While this phenomenon appears to occur for several traits with gcp estimates
close to zero, there were no trait pairs with statistically significant evidence that their
mixed fourth moments had opposite signs.

Supplementary Table 12: Results for all genetically correlated pairs of phenotypes (see
Excel file). We report p-values for LCV, MR, MR-Egger, bidirectional MR, and the
auxiliary test for partial causality. We also report gcp estimates using LCV and genetic
correlation estimates using LDSC.16
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Trait 1 Trait 2 Traits conditioned pLCV ρ̂g (std err) ˆgcp(post std err)

BMI MI LDL, TG 6 × 10−26 0.28(0.09) 0.48(0.42)
Triglycerides MI LDL, BMI 1 × 10−20 0.18(0.07) 0.82(0.13)

LDL MI TG, BMI N/A 0.02(0.09) N/A
Hypothyroidism MI LDL, TG, BMI 2 × 10−23 0.17(0.06) 0.78(0.14)
High cholesterol MI LDL, TG, BMI 0.006 0.42(0.15) 0.59(0.23)

HDL MI LDL, TG, BMI 0.8 -0.16(0.06) -0.15(0.48)

Supplementary Table 13: Conditional analyses of MI and potential MI risk factors.
Trait 1 summary statistics were residualized on summary statistics for BMI, LDL and
triglycerides, and these were analyzed in conjunction with summary statistics for MI
(see Online Methods). LCV results are reported for traits whose genetic correlation
with MI remained significant (p < 0.05) after residualizing; results are reported as N/A
for other traits. BMI, LDL and triglycerides were chosen as covariates because they
represent well-established causal risk factors for MI. This approach is motivated by a
scenario in which the covariates have fully genetically causal effects on both trait 1
and MI. If the covariates are genetically correlated with but not causal for trait 1, then
this approach could potentially introduce collider bias35 and false positive associations.
Moreover, if the effect of trait 1 on MI is mediated by one of the covariates, evidence
for a causal effect may persist. Due to these limitations, we view this approach as a
sensitivity analysis, and we do not recommend applying LCV to residualized summary
statistics as a primary analysis.

Trait 1 Trait 2 pLCV ρ̂g (std err) ˆgcp(std err)

BMI Type 2 Diabetes 0.086 0.60 (0.04) 0.45 (0.41)
Asthma FVC 0.084 -0.17 (0.04) 0.22 (0.12)
Asthma FEV1/FVC 0.12 -0.30 (0.04) 0.16 (0.10)

Smoking status FVC 0.29 -0.03 (0.03) -0.03 (0.53)
Smoking status FEV1/FVC 0.40 0.03 (0.03) -0.08 (0.47)
Smoking status MI 0.17 0.23 (0.05) 0.49 (0.33)

Anorexia BMI 0.26 -0.17 (0.04) 0.31 (0.45)

Supplementary Table 14: Plausible causal relationships not identified by LCV.

Trait 1 Trait 2 pLCV pbi-MR ρ̂g (std err) ˆgcp(std err)
Triglycerides MI 8 × 10−32 0.009 0.30 (0.06) 0.90 (0.08)
Triglycerides BP - systolic 6 × 10−41 0.002 0.13 (0.03) 0.89 (0.08)

HDL Hypertension 6 × 10−22 0.05 -0.29 (0.06) 0.87 (0.09)
LDL High cholesterol 8 × 10−7 0.48 0.77 (0.07) 0.86 (0.11)
LDL Bone mineral density - heel 4 × 10−34 0.06 -0.12 (0.05) 0.80 (0.12)

Triglycerides Eosinophil count 3 × 10−17 0.2 0.14 (0.05) 0.75 (0.16)
Balding4 Number children - male 2 × 10−30 0.06 -0.16 (0.05) 0.75 (0.13)

HDL Platelet distribution width 8 × 10−17 0.004 -0.14 (0.04) 0.75 (0.16)
RBC distribution width Type 2 Diabetes 3 × 10−4 0.45 0.11 (0.03) 0.73 (0.19)

LDL MI 2 × 10−31 0.05 0.17 (0.08) 0.73 (0.13)
Platelet distribution width Platelet count 1 × 10−7 0.03 -0.47 (0.04) 0.73 (0.15)
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Hypothyroidism Type 2 Diabetes 2 × 10−4 0.57 0.22 (0.05) 0.73 (0.29)
HDL Type 2 Diabetes 2 × 10−7 0.95 -0.40 (0.06) 0.72 (0.17)

Hypothyroidism MI 6 × 10−12 0.06 0.26 (0.05) 0.72 (0.16)
High cholesterol MI 2 × 10−4 0.15 0.52 (0.12) 0.71 (0.19)

HDL BP - diastolic 4 × 10−17 0.25 -0.12 (0.06) 0.70 (0.18)
Platelet distribution width Reticulocyte count 1 × 10−7 0.07 0.13 (0.04) 0.69 (0.20)

LDL College 1 × 10−10 0.13 -0.13 (0.05) 0.68 (0.30)
Triglycerides Monocyte count 1 × 10−4 0.56 0.14 (0.04) 0.67 (0.21)

Type 2 Diabetes Ulcerative Colitis 2 × 10−5 0.61 -0.14 (0.07) 0.65 (0.23)
Type 2 Diabetes Hypertension 8 × 10−4 0.12 0.44 (0.05) 0.56 (0.18)

HDL FEV1/FVC 1 × 10−13 0.21 -0.09 (0.04) 0.56 (0.08)
High cholesterol Neuroticism 2 × 10−14 0.06 0.09 (0.03) 0.55 (0.19)

Triglycerides Basal metabolic rate 2 × 10−8 0.94 0.08 (0.04) 0.55 (0.13)
Triglycerides Height 3 × 10−14 0.81 -0.10 (0.03) 0.45 (0.09)

HbA1C High cholesterol 5 × 10−22 0.46 0.25 (0.06) 0.44 (0.16)
High cholesterol Smoking status 5 × 10−19 0.004 0.13 (0.03) 0.42 (0.02)

Reticulocyte count Hypertension 2 × 10−4 0.24 0.27 (0.04) 0.41 (0.13)
BMI Asthma 4 × 10−14 0.002 0.21 (0.03) 0.40 (0.27)

High cholesterol Monocyte count 4 × 10−4 0.96 0.09 (0.03) 0.40 (0.15)
Height College 3 × 10−6 0.19 0.17 (0.03) 0.33 (0.10)

Prostrate cancer Hypothyroidism 10 × 10−5 0.07 -0.12 (0.05) 0.30 (0.38)
Crohns Disease LDL 4 × 10−13 0.5 -0.12 (0.06) 0.29 (0.15)
High cholesterol Type 2 Diabetes 4 × 10−6 0.002 0.42 (0.05) 0.24 (0.30)

RBC count Monocyte count 8 × 10−7 0.001 0.14 (0.05) 0.24 (0.46)
HbA1C BMI 7 × 10−17 0.05 0.25 (0.05) 0.23 (0.35)

Basal metabolic rate Hypothyroidism 6 × 10−21 0.006 0.11 (0.04) 0.21 (0.04)
Platelet distribution width Mean corpuscular hemoglobin 5 × 10−14 0.02 -0.06 (0.02) 0.15 (0.14)

Depressive syndrome Asthma 4 × 10−4 0.09 0.21 (0.05) 0.14 (0.08)
Age at menopause Depressive syndrome 2 × 10−7 0.43 -0.27 (0.06) 0.12 (0.32)

Asthma Lymphocyte count 2 × 10−4 0.73 0.09 (0.04) 0.08 (0.19)
Number children - male Hypothyroidism 9 × 10−11 0.13 0.18 (0.05) 0.03 (0.26)
RBC distribution width High cholesterol 4 × 10−4 0.22 0.11 (0.04) 0.00 (0.17)

Type 2 Diabetes Mean cell volume 0.002 8 × 10−5 -0.15 (0.03) 0.77 (0.20)
Height BMI 0.002 2 × 10−4 -0.17 (0.03) 0.65 (0.23)

Type 2 Diabetes HbA1C 0.05 1 × 10−5 0.47 (0.09) 0.54 (0.28)
Schizophrenia Basal metabolic rate 0.06 3 × 10−4 -0.09 (0.04) 0.51 (0.32)

BMI Lymphocyte count 0.002 4 × 10−14 0.20 (0.03) 0.50 (0.21)
BMI Hypothyroidism 0.08 0.001 0.16 (0.03) 0.49 (0.31)

College Reticulocyte count 0.13 6 × 10−12 -0.19 (0.04) 0.47 (0.30)
BMI Type 2 Diabetes 0.04 < 10−20 0.60 (0.04) 0.45 (0.41)

Reticulocyte count Smoking status 0.02 2 × 10−8 0.10 (0.04) 0.42 (0.23)
Height Platelet count 0.002 7 × 10−8 -0.13 (0.03) 0.42 (0.17)

Age at menopause Type 2 Diabetes 0.38 3 × 10−4 -0.17 (0.05) 0.39 (0.35)
College White cell count 0.03 3 × 10−8 -0.22 (0.04) 0.38 (0.20)
College Lymphocyte count 0.06 3 × 10−5 -0.10 (0.05) 0.34 (0.31)

Basal metabolic rate College 0.06 7 × 10−4 -0.07 (0.03) 0.29 (0.38)
Smoking status Asthma 0.19 2 × 10−4 0.09 (0.04) 0.29 (0.45)

BMI Monocyte count 0.35 8 × 10−7 0.14 (0.03) 0.28 (0.40)
BMI RBC distribution width 0.19 2 × 10−9 0.18 (0.02) 0.26 (0.21)

Mean cell volume Smoking status 0.14 2 × 10−6 0.13 (0.03) 0.24 (0.25)
HDL BMI 0.08 1 × 10−6 -0.36 (0.05) 0.22 (0.15)
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Mean corpuscular hemoglobin Smoking status 0.22 3 × 10−7 0.08 (0.03) 0.21 (0.35)
BMI Basal metabolic rate 0.18 6 × 10−13 0.66 (0.02) 0.21 (0.22)

Mean corpuscular hemoglobin RBC count 0.27 2 × 10−5 -0.67 (0.03) 0.19 (0.29)
BMI FEV1/FVC 0.34 7 × 10−8 0.17 (0.02) 0.13 (0.17)

College BP - diastolic 0.48 3 × 10−4 -0.09 (0.04) 0.08 (0.35)
BMI Triglycerides 0.01 3 × 10−4 0.27 (0.05) 0.08 (0.25)

RBC count BMI 0.39 2 × 10−6 0.10 (0.03) 0.08 (0.23)
Smoking status White cell count 0.29 8 × 10−6 0.12 (0.05) 0.07 (0.32)

College Monocyte count 0.27 6 × 10−5 -0.15 (0.03) 0.06 (0.49)
Triglycerides Hypertension 5 × 10−39 2 × 10−4 0.25 (0.04) 0.95 (0.04)

BMI MI 3 × 10−9 2 × 10−7 0.34 (0.09) 0.94 (0.11)
Triglycerides Mean cell volume 10 × 10−19 8 × 10−5 -0.20 (0.04) 0.86 (0.11)
Triglycerides BP - diastolic 5 × 10−39 2 × 10−5 0.11 (0.04) 0.86 (0.10)

Mean platelet volume Platelet count 6 × 10−10 2 × 10−4 -0.66 (0.03) 0.84 (0.10)
BMI Hypertension 2 × 10−16 7 × 10−15 0.38 (0.03) 0.83 (0.11)

Triglycerides Platelet distribution width 5 × 10−17 3 × 10−5 0.19 (0.04) 0.81 (0.13)
BMI FVC 4 × 10−13 2 × 10−11 -0.22 (0.03) 0.79 (0.17)

Triglycerides Reticulocyte count 2 × 10−10 9 × 10−5 0.33 (0.05) 0.79 (0.14)
BMI Reticulocyte count 4 × 10−5 < 10−20 0.39 (0.03) 0.64 (0.25)

Height Bone mineral density - heel 3 × 10−14 1 × 10−6 -0.09 (0.04) 0.50 (0.14)
Age at menarche Height 7 × 10−11 6 × 10−12 0.16 (0.04) 0.43 (0.10)

Height Basal metabolic rate 10 × 10−9 8 × 10−5 0.57 (0.03) 0.39 (0.07)
Eczema FEV1/FVC 2 × 10−15 5 × 10−8 -0.08 (0.03) 0.36 (0.10)

BMI High cholesterol 2 × 10−6 1 × 10−8 0.33 (0.06) 0.13 (0.12)
White cell count BMI 7 × 10−5 2 × 10−15 0.24 (0.03) 0.09 (0.16)

College High cholesterol 2 × 10−8 9 × 10−4 -0.23 (0.03) 0.01 (0.08)

Supplementary Table 15: Pairs of traits identified by either LCV only (top), Bidirec-
tional MR only (middle), or both methods (bottom).
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Trait 1 Trait 2 ρ̂g (std err) pLCV poutliers removed

HC Neuroticism 0.09 (0.03) 2 × 10−14 0.15
RBCs Monocytes 0.14 (0.05) 8 × 10−7 0.004

College High cholesterol -0.23 (0.03) 2 × 10−8 0.18

BMI T2D 0.61 (0.04) 0.09 9 × 10−6

High cholesterol RBCs 0.08 (0.03) 0.002 10 × 10−8

Asthma White cells 0.14 (0.04) 0.92 3 × 10−10

RDW High cholesterol 0.11 (0.04) 8 × 10−4 2 × 10−7

HDL Age at menopause 0.10 (0.05) 0.83 5 × 10−6

Supplementary Table 16: Trait pairs with discordant results after outlier removal.
Three trait pairs were no longer significant (top; one of these pairs remained nearly
significant), and five new trait pairs became significant after we applied the outlier-
removal procedure (bottom; two of these pairs were previously nearly significant). We
generally do not recommend removing outlier loci, because they may contain valu-
able information. When outlier removal causes a significant result to become non-
significant, this does not imply that failure to remove outliers causes false positives,
as the outlier removal procedure (which removes entire jackknife blocks) can result in
reduced power, particularly when multiple jackknife blocks are removed.

X Random variable*
Y1, Y2 Random variable
L Random variable

γ1, γ2 Random variable
π Random variable

α1, α2 Random variable
ρg Fixed parameter
gcp Fixed parameter**
q1, q2 Fixed parameter**

Supplementary Table 17: List of variables and fixed parameters under the LCV model.
*X can be viewed as fixed if in-sample LD is used for the LD score regression steps (Y
and L would still be viewed as random). **For the purpose of estimation, we impose a
prior on gcp, and thus also implicitly on q1, q2 (conditional on ρg); however, this choice
is made for convenience and is not integral to the LCV model.
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1 Simulations

1.1 Existing Mendelian Randomization methods

Two-sample MR. As described in ref. 5, we ascertained significant SNPs (p < 5 × 10−8, χ2

test) for the exposure and performed an unweighted regression, with intercept fixed at zero, of the
estimated effect sizes on the outcome with the estimated effect sizes on the exposure (in practice,
a MAF-weighted and LD-adjusted regression is often used; in our simulations, all SNPs had equal
MAF, and there was no LD). To assess the significance of the regression coefficient, we estimated

the standard error as se =
√

1
K ∑K

k=1 β̄
2
k2

∑K
k=1 β̂

2
k1

, where β̄k2 is the kth residual, N2 is the sample size in the

outcome cohort, and K is the number of significant SNPs. This estimate of the standard error
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allows the residuals to be overdispersed compared with the error that is expected from the GWAS
sample size. To obtain p values, we applied a two-tailed t-test to the regression coefficient divided
by its standard error, with K − 1 degrees of freedom.

MR-Egger. As described in ref. 7, we ascertained significant SNPs for the exposure and coded
them so that the alternative allele had a positive estimated effect on the exposure. We performed
an unweighted regression with a fitted intercept of the estimated effect sizes on the outcome on
the estimated effect sizes on the exposure. We assessed the significance of the regression using the
same procedure as for two-sample MR, except that the t-test used K − 2 rather than K − 1 degrees
of freedom.

Bidirectional MR. We implemented bidirectional mendelian randomization in a manner similar
to ref. 11. Significant SNPs were ascertained for each trait. If the same SNP was significant for both
traits, then it was assigned only to the trait where it ranked higher (if a SNP ranked equally high
for both traits, it was excluded from both SNP sets). The Spearman correlations r1, r2 between
the z scores for each trait was computed on each set of SNPs, and we applied a χ2

1 test to

χ2 = 1
1

K1−3 +
1

K2−3

(atanh(r1) − atanh(r2))2, (1)

where Kj is the number of significant SNPs for trait j. In ref. 11, the statistics atanh(rj) were
also used, but a relative likelihood comparing several different models was reported instead of a
p-value. We chose to report p-values for Bidirectional MR in order to allow a direct comparison
with other methods.

Weighted median. As described in ref. 8, we ascertained significant SNPs for the exposure and
computed ratio estimates and weights for each SNP. We computed the weighted median of the ratio
estimates and estimated the standard error using a parametric bootstrap (100 bootstrap runs). We
assessed significance using a Z test.

Mode based estimator. We ascertained significant SNPs for the exposure and computed ratio
estimates for each SNP. We fit a curve to the observed ratio estimates using the Matlab fitdist()
function with a bandwidth parameter as recommended in ref. 10, with uniform SNP weights. We
verified that the Matlab fitdist() function produces identical curves as the original implementation
in R. We computed the mode of the smoothed distribution and estimated its standard error using
a parametric bootstrap (100 bootstrap runs). We assessed significance using a Z test.

Application of MR to real data. For our applications of MR and related methods to real data,
we selected genetic instruments using a greedy pruning procedure. We ranked all genome-wide
significant SNPs for the exposure (p < 5 × 10−8) by χ2 statistic. Iteratively, we removed all SNPs
within 1cM of the first SNP in the list, obtaining a set of independent lead SNPs separated by
at least 1cM. We confirmed using an LD reference panel that our 1cM window was sufficient to
minimize LD among the set of retained SNPs. We applied each MR method as described above; in
particular, we performed unweighted regressions for MR and MR-Egger.

Application of MR to LDL and BMD. We applied two-sample MR (see above) to 8 curated
SNPs that were previously used to show that LDL has a causal effect on CAD in ref. 3. 10 SNPs
were used in ref. 3, of which summary statistics were available for 8 SNPs: rs646776, rs6511720,
rs11206510, rs562338, rs6544713, rs7953249, rs10402271 and rs3846663.
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1.2 Simulations involving LCV model violations

In order to investigate potential limitations of our approach, we performed null and causal simula-
tions under genetic architectures that violate LCV model assumptions. As noted above, partial ge-
netic causality is well-defined without making LCV (or other) model assumption (see Online Meth-
ods). There are two classes of LCV model violations: independence violations and proportionality
violations. Roughly, independence violations involve a violation of the independence assumption
between (1) mediated effects (π) and (2) direct effects (γ) while still satisfying a key proportion-
ality condition related to the mixed fourth moments; as a result, independence violations are not
expected to cause LCV to produce false positives (see Online Methods). Proportionality violations,
on the other hand, violate this proportionality condition and are potentially more problematic. A
representative example of an independence violation is a bivariate Gaussian mixture model where
one of the mixture components generates imperfectly correlated effect sizes on the two traits. These
SNPs underlying this mixture component can be viewed as having both an effect on L and also
a residual effect on the two traits directly, in violation of the independence assumption. First, we
performed null simulations under a Gaussian mixture model with a nonzero genetic correlation.
These simulations were similar to the simulations reported in Figure 2b, except that the correlated
SNP effect sizes (1% of SNPs) were drawn from a bivariate normal distribution with correlation 0.5
(explaining 20% of heritability for each trait; in Figure 2b, these effects were perfectly correlated).
Similar to Figure 2b, LCV and bidirectional MR produced p-values that were well-calibrated, while
MR and MR-Egger produced inflated p-values (Supplementary Figure 1a, Supplementary Table 4a-
d). Second, similar to Figure 2c, we included differential polygenicity between the two traits, finding
that differential polygenicity caused all existing methods including bidirectional MR, but not LCV,
to produce false positives (Supplementary Figure 1b, Supplementary Table 4f-h). Third, similar to
Figure 2d, we included differential power between the two traits, again finding that LCV produced
well-calibrated p-values while existing methods produced false positives (Supplementary Figure 1c,
Supplementary Table 4i-k).

A representative example of a proportionality violation is a model in which two intermedi-
aries L1 and L2 have different effect sizes on the two traits, and L1 and L2 also have unequal
polygenicity. First, for comparison purposes, we considered a model with two intermediaries with
equal polygenicity; 2% of SNPs were causal for each intermediary, and 4% of SNPs were causal
for each trait exclusively. Because this model implies only an independence violation (see Online
Methods), we expected that LCV would not produce false positives. Indeed, LCV produced well-
calibrated p-values (Supplementary Figure 1d, Supplementary Table 5a). Similar to Figure 2b and
Supplementary Figure 1a, Bidirectional MR also produced well-calibrated p-values, while MR and
MR-Egger produced false positives. Second, we shifted the polygenicity of the two intermediaries in
opposite directions: 1% of SNPs were causal for L1 and 8% of SNPs were causal for L2, resulting in
a proportionality violation. We expected that LCV would produce false positives, as the interme-
diary with lower polygenicity would disproportionately affect the mixed fourth moments. Indeed,
LCV (as well as other methods) produced false positives, indicating that proportionality violations
cause LCV to produce false positives (Supplementary Figure 1e, Supplementary Table 5b-d). We
investigated the gcp estimates produced by LCV in these simulations, finding that LCV produced
low gcp estimates ( ˆgcp ≈ 0.5; Supplementary Figure 2a). We varied the difference in polygenicity
as well as the difference in the relative effect sizes of the two intermediaries, finding that extreme
parameter settings (e.g., a 32× difference in polygenicity in conjunction with a 25× difference in
the relative effect sizes of L1 and L2) were required to cause LCV to produce high gcp estimates
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(gcp > 0.6; Supplementary Figure 2a). Thus, proportionality violations of LCV model assumptions
can cause LCV (and other methods) to produce false positives, but genetic causality remains the
most parsimonious explanation for high gcp estimates.

Finally, we performed (fully) causal simulations under LCV model violations. First, we simu-
lated an independence violation by specifying a Gaussian mixture model where every SNP affecting
trait 1 also affected trait 2, but the relative effect sizes were noisy (Supplementary Figure 1f, Sup-
plementary Table 4l-n). Sample size and polygenicity were similar to Figure 3a (4× lower sample
size than Supplementary Figure 1a). As expected, LCV had lower power to detect a causal effect
than in Figure 3a, although it still had moderately high power. Second, we simulated a proportion-
ality violation by specifying both a causal effect (corresponding to L1) and an additional genetic
confounder (corresponding to L2) (Supplementary Figure 1g, Supplementary Table 5i-k). LCV
had lower power to detect a causal effect than in Figure 3a, although it still had high power. We
investigated the gcp estimates produced by LCV in these simulations, finding that they were sub-
stantially lower than 1 (Supplementary Table 5i-k and Supplementary Figure 2b). Therefore, gcp
estimates lower than 1 should not be viewed as conclusive evidence against a fully causal effect; an
alternative explanation is that model violations cause LCV to underestimate the gcp.

In summary, we determined in null simulations that independence violations do not cause
LCV to produce false positives; in addition, these simulations recapitulated the limitations of
existing methods that we observed in simulations under the LCV model (Figure 2). Proportionality
violations caused LCV (as well as existing methods) to produce false positives; however, extreme
values of the simulation parameters were required in order for LCV to produce high gcp estimates.
In causal simulations, we determined that both independence and proportionality violations lead
to reduced power for LCV (and other methods), as well as downwardly biased gcp estimates for
LCV.

1.3 Simulations with LD

We performed simulations with LD to assess the robustness of LCV; we note that LD can potentially
affect the performance of our method, which uses a modified version of LD score regression16,19

to normalize effect size estimates and to estimate genetic correlations. LD was computed using
M = 596k common SNPs in N = 145k samples of European ancestry from the UK Biobank interim
release.27 Unlike our simulations with no LD, these simulations also included sample overlap.
Because existing methods exhibited major limitations in simulations with no LD (Figure 2), we
restricted these simulations to the LCV method.

First, we performed null simulations to assess calibration. We chose a set of default parameters
similar to Figure 2b and varied each parameter in turn. In particular, similar to Figure 2, these
simulations included uncorrelated pleiotropy, genetic correlations, differential polygenicity between
the two traits, and differential power between the two traits (Supplementary Table 6a-m). LCV
produced approximately well-calibrated or conservative false positive rates. Slight inflation was ob-
served due to noise in our heritability estimates (Supplementary Table 6c-m); proper calibration was
restored by using constrained-intercept LD score regression19 (resulting in more precise heritability
estimates) (Supplementary Table 7a-f). To avoid problems with noisy heritability estimates, we
restrict our analyses of real traits to data sets with highly significant heritability estimates (Z score
for nonzero h2 = Zh > 7). We also determined that uncorrected population stratification led to false
positives (Supplementary Table 8).

Second, we performed causal simulations to assess power. We chose a set of default parameters
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similar to our null simulations, finding that LCV was well-powered (Supplementary Table 6t),
although its power was lower than in simulations with no LD (Figure 3a). We varied each parameter
in turn, finding that power was reduced when we reduced the sample size, increased the polygenicity
of the causal trait, reduced the causal effect size, or simulated a partially causal rather than
fully causal genetic architecture (Supplementary Table 6u-bb), similar to simulations with no LD
(Figure 3b-f). These simulations indicate that LCV is well-powered to detect a causal effect for
large GWAS under most realistic parameter settings, although its power does depend on genetic
parameters that are difficult to predict.

Third, to assess the unbiasedness of gcp posterior mean (and variance) estimates, we performed
simulations in which the true value of gcp was drawn uniformly from [−1,1] (corresponding to
the prior that LCV uses to compute its posterior mean estimates, see Online Methods). We
expected posterior-mean estimates to be unbiased in the Bayesian sense that E(gcp∣ ˆgcp) = ˆgcp
(which differs from the usual definition of unbiasedness, that E( ˆgcp∣gcp) = gcp).26 Thus, we
binned these simulations by ˆgcp and plotted the mean value of gcp within each bin (Supplementary
Figure 3). We determined that mean gcp within each bin was concordant with ˆgcp. In addition, the
root mean squared error was 0.15, approximately consistent with the root mean posterior variance
estimate of 0.13 (Supplementary Table 9).

In summary, we confirmed using simulations with LD that LCV produces well-calibrated false
positive rates under a wide range of realistic genetic architectures; some p-value inflation was
observed when heritability estimates were noisy, but false positives can be avoided in analyses of
real traits by restricting to traits with highly significant heritability (Zh > 7). We also confirmed that
LCV is well-powered to detect a causal effect under a wide range of realistic genetic architectures,
and produces unbiased posterior mean estimates of the gcp.

1.4 Simulation details

In order to simulate summary statistics with no LD, first, we chose causal effect sizes for each SNP
on each trait according to the LCV model. For all simulations except for Supplementary Table 4,
the causal effect size vector for trait k was

βk =
h2
k

M
(qkπ + γk), (2)

where in all simulations except for Supplementary Table 5, qk was a scalar, and π and γk were 1×M
vectors. In Supplementary Table 5, qk was a 1×2 vector and π was a 2×M matrix. Entries of π were
drawn from i.i.d. point-normal distribution with mean zero, variance 1, and expected proportion
of causal SNPs equal to pπ. Entries of γk were drawn from i.i.d. point-normal distributions with
expected proportion of causal SNPs equal to pγk ; we modeled colocalization between non-mediated
effects by fixing some expected proportion of SNPs pγ1,2 < min(pγ1 , pγ2) as having nonzero values
of both γ1 and γ2. Then, we centered and re-scaled the nonzero entries of π and γk, so that they
had mean 0 and variance 1 and 1 − q2

k, respectively.
For simulations in Supplementary Table 4, effect sizes were drawn from a mixture of Nor-

mal distributions: there was a point mass at (0,0); a component with σ2
1 = 0, σ2

2 ≠ 0; a com-

ponent with σ2
1 ≠ 0, σ2

2 = 0; and a component with σ2
1 ≠ 0, σ2

2 ≠ 0, σ12 =
√
σ2

1σ
2
2. Values of

M,Nk,Nshared, ρtotal, pγk , pγ1,2 , h
2
k, pπ, qk for each simulation can be found in Supplementary Ta-

ble 1.
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Second, we simulated summary statistics as

β̂k∼N(βk,
1

Nk
I), (3)

where βk is the vector of true causal effect sizes for trait k and Nk is the sample size for trait k.
When we ran LCV on these summary statistics, we used constrained-intercept LD score regression
rather than variable-intercept LD score regression both to normalize the effect estimates19 and to
estimate the genetic correlation,16 with LD scores equal to one for every SNP.

In simulations with LD, we first simulated causal effect sizes for each trait in the same manner
as simulations with no LD. Then, we obtained summary statistics in one of two ways, either using
real genotypes or using real LD only.

For simulations with real genotypes modeling population stratification (Supplementary Table 8),
we chose effect sizes for each SNP and each trait from the LCV model with various parameters
and multiplied these effect size vectors by real genotype vectors from UK Biobank,27 adding noise
to obtain simulated phenotypes. For computational efficiency, we restricted these genotypes to
chromosome 1 (M = 43k). We added stratification directly to the phenotype values along PC1
(computed on 43k SNPs and N1+N2 individuals), with effect sizes

√
0.01 and

√
0.02 for trait 1 and

trait 2, respectively. We then re-normalized phenotypes to have variance 1; afterwards, ∼1% and
∼2% of variance were explained by PC1 for each trait respectively. We estimated SNP effect sizes
for each trait by correlating each SNP with the phenotypic values in Nk individuals. In corrected
simulations (Supplementary Table 8b,d,f), we residualized the PC1 SNP loadings (computed on all
N1 +N2 individuals) from the SNP effect estimates, a procedure which is effectively equivalent to
correction of the individual-level data.25

For other simulations, we simulated summary statistics without first simulating phenotypic
values, using the fact that the sampling distribution of Z-scores is approximately:23

Z∼N(
√
NRβ,R), (4)

where R is the LD matrix and β is the vector of true effect sizes. We estimated R from the
N = 145k UK Biobank cohort using plink with an LD window size of 2Mb (M = 596k), which we
converted into a block diagonal matrix with 1001 blocks. The number 1001 was chosen instead
of the number 1000 so that the boundaries of these blocks would not align with the boundaries
of our 100 jackknife blocks; the use of blocks allowed us to avoid diagonalizing a matrix of size
596k, while not significantly changing overall LD patterns (there are ∼50,000 independent SNPs
in the genome, and 1001 << 50,000). Because the use of a 2Mb window causes the estimated
LD matrix to be non-positive semidefinite (even after converting it into a block diagonal matrix),
each block was converted into a positive semidefinite matrix by diagonalizing it and removing
its negative eigenvalues: that is, we replaced each block A = V ΣV T with the matrix B, where
B = V max(0,Σ)V T . Then, because the removal of negative eigenvalues causes B′ to have entries
slightly different from one, we re-normalized each block: C =D−1/2BD−1/2, where D is the diagonal
matrix corresponding to the diagonal of B. Even though the diagonal elements of B are close to
1 (mostly between 0.99 and 1.01), this step is important to obtain reliable heritability estimates
using LD score regression because otherwise the diagonal elements of the LD matrix will be strongly
correlated with the LD scores (r2 ≈ 0.5) and the heritability estimates will be upwardly biased,
especially at low sample sizes.

We concatenated the blocks C1, ...,C1001 to obtain a positive semi-definite block-diagonal matrix
R′. We also computed and concatenated the matrix square root of each block. In order to obtain
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samples from a Normal distribution with mean R′β and variance 1
NR

′, we multiplied a vector
having independent standard normal entries by the matrix square root of R′ and added this noise
vector to the vector of true marginal effect sizes, R′β. We computed LD scores directly from
R. For simulations with sample overlap, the summary statistics were correlated between the two
GWAS: the correlation between the noise term in the estimated effect of SNP i on trait 1 and the
estimated effect of SNP j on trait 2 was R′

ijρtotalNshared/
√
N1N2, which is the amount of correlation

that would be expected if the total (genetic plus environmental) correlation between the traits is
ρtotal.
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2 Characterization of LCV model violations

In this section, we define partial genetic causality without making LCV (or other) model assump-
tions and characterize the type of LCV model violation that causes LCV to produce false positives
and bias. There are two classes of LCV model violations: independence violations and proportional-
ity violations. Roughly, independence violations involve a violation of the independence assumption
between mediated effects (π) and direct effects (γ) while still satisfying a key proportionality con-
dition related to the mixed fourth moments; as a result, independence violations are not expected
to cause LCV to produce false positives (see Online Methods). Proportionality violations, on the
other hand, violate this proportionality condition and are potentially more problematic. In order
to make this characterization, it is necessary to define partial genetic causality in a more general
setting, without assuming the LCV model. Partial genetic causality is defined in terms of the
correlated genetic component of the bivariate SNP effect size distribution, which generalizes the
shared genetic component modeled by LCV; unlike the shared genetic component, the correlated
genetic component does not have proportional effects on both traits (but merely correlated effects).

2.1 Definition of partial genetic causality without LCV model assumptions

Let A = (α1, α2) be the bivariate distribution of marginal effect sizes, normalized to have zero mean
and unit variance. First, we define an even genetic component of A as a distribution T = (t1, t2)
that is independent of its complement A − T and that satisfies a mirror symmetry condition:

(t1, t2) ∼ (−t1, t2) ∼ (t1,−t2). (5)

Equivalently, the density function of T is an even function of both variables. Note that an even
genetic component does not contribute to the genetic correlation. In order to define the “correlated
genetic component,” we would like to define a maximal even component, i.e. an even component
that explains the largest possible amount of heritability for both traits. However, if A follows
a Gaussian distribution, then there is no maximal even component: instead, the even genetic
component that maximizes the proportion of trait 1 heritability explained fails to maximize the
proportion of trait 2 heritability explained. This fact is related to the observation that the LCV
model is non-identifiable when the effect size distribution for L follows a Gaussian distribution,
and only when it follows a Gaussian distribution (see Identifiability). Generalizing this result, we
conjecture that there exists an even component that is maximal up to a Gaussian term. More
precisely, there exists a maximal even component T ∗ = (t∗1 , t∗2) such that for any even component
T = (t1, t2), there exists a (possibly degenerate) Gaussian random variable Z = (z∗1 , z∗2) independent
of T ∗ such that T ∗ +Z is an even component and E((t∗1 + z1)2) ≥ E(t21) and E((t∗2 + z2)2) ≥ E(t22).
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We define the correlated genetic component S = (s1, s2) as the complement of the maximal even
component and the Gaussian term. Trait 1 is defined as partially genetically causal for trait 2 if
E(s2

1) > E(s2
2), and vice versa. We may also define the genetic causality proportion using main

text equation (1), substituting E(s2
k) for q2

k. However, the interpretation of the gcp is not as clear
in this more general setting. Note that the correlated genetic component may be identically 0, for
example if A is bivariate Gaussian or if A itself is an even component; in both cases, there is no
partial causality, and the genetic causality proportion is undefined. In practice, if the correlated
genetic component is 0 or nearly 0, LCV will produce null p-values and low, noisy gcp estimates.

2.2 Independence violations and proportionality violations

The LCV model assumption is equivalent to the statement that the correlated genetic component
resembles a line through the origin (and there is no Gaussian term): S = (q1π, q2π), for some
random variable π and fixed parameters q1, q2 such that ρg = q1q2. Under the LCV model we refer
to this distribution as the shared genetic component because its effects are fully shared (rather
than merely correlated) between the two traits. This assumption enables an inference approach
based on mixed fourth moments because it implies that the mixed fourth moments of the correlated
component are proportional to the respective variances:

E(s1s2s
2
k)∝ E(s2

k), (6)

where under the LCV model, the proportionality constant is q1q2E(π4). However, the interpretation
of the gcp is not as clear in this more general setting; in particular, a gcp of 1 implies that every
SNP affecting trait 1 also affects trait 2, but not proportionally. Note that the correlated genetic
component may be identically 0, for example if A is bivariate Gaussian or if A itself is an even
genetic component; in both cases, there is no partial causality, and the genetic causality proportion
is undefined. In practice, if the correlated genetic component is 0 or nearly 0, LCV will produce
null p-values and low, noisy gcp estimates.

Intuitively, this type of violation arises as a result of non-independence between mediated effects
(π) and direct effects (γ), causing “noise” from the direct effects to be incorporated into the
correlated component. For this reason, we call such violations independence violations; genetic
architectures that violate the proportionality condition we call proportionality violations. In the
presence of an independence violation, we obtain the following moment condition, generalizing main
text equation (2):

E(α1α2α
2
k) = cE(s2

k) + 3ρg (7)

where c is a proportionality constant. In particular, if E(s2
1) = E(s2

2) (no partial causality), then
E(α1α

3
2) = E(α2α

3
1), and LCV is expected to produce well-calibrated p-values. Conversely, under

a proportionality violation, LCV is expected to produce inflated p-values under the null.

3 Discussion of additional trait pairs

3.1 Positive results

We briefly discuss several other trait pairs with significant evidence of partial genetic causality,
including novel results and results that have previously been reported (Supplementary Table 11).
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• We identified four traits with evidence for a fully or partially genetically causal effect on hyper-
tension (Supplementary Table 11), which is genetically correlated with MI (ρ̂g = 0.49(0.10)).
These included genetically causal effects of BMI, consistent with the published literature,11,38

as well as triglycerides and HDL. The genetically causal effect of HDL indicates that there
exist major metabolic pathways affecting hypertension with little or no corresponding effect
on MI. The positive partially genetically causal effect of reticulocyte count, which had a
low gcp estimate ( ˆgcp = 0.41(0.13)), is likely related to the substantial genetic correlation of
reticulocyte count with triglycerides (ρ̂g = 0.33(0.05)) and BMI (ρ̂g = 0.39(0.03)).

• We detected evidence for a fully or partially genetically causal effect of triglycerides on five
cell blood traits: mean cell volume, platelet distribution width, reticulocyte count, eosinophil
count and monocyte count (Table 1). These results highlight the pervasive effects of metabolic
pathways, which can induce genetic correlations with cardiovascular phenotypes. For example,
shared metabolic pathways may explain the high genetic correlation of reticulocyte count with
MI (ρ̂g = 0.31(0.06)) and hypertension (ρ̂g = 0.27(0.04)).

• There was evidence for a negative fully or partially genetically causal effect of BMI on FVC,
consistent with a longitudinal association between increased BMI and decreased FVC.69 Sim-
ilarly, there was evidence for partially genetically causal effects of fasting glucose on FVC and
of HDL on FEV1/FVC; these trait pairs had lower gcp estimates and genetic correlations,
possibly consistent with mediation of the respective genetic correlations by BMI. There was
also evidence for partially causal effects of eczema on FEV1/FVC and of BMI on asthma,
with low gcp estimates.

• There was evidence for a negative fully or partially genetically causal effect of balding on
number of children in males. Two possible explanations are shared pathways involving an-
drogens70 and sexual selection against early balding.

• There was evidence for a fully or partially genetically causal effect of HDL and red blood cell
distribution width on T2D, with a much higher genetic correlation for HDL (ρg = −0.40(0.06)).
A published MR study provided no strong evidence for an effect of HDL on T2D, despite being
well powered to detect a fully genetically causal effect, given the high genetic correlation.73

It is possible that there is a partially genetically causal effect that MR may have lower power
to detect, as it is expected by chance that some trait pairs having gcp estimates of around
0.7 would have the true gcp values below 0.5 (HDL and T2D: ˆgcp = 0.72(0.17)). A gcp of
∼ 0.5 for these traits would be less surprising, if lipid traits more broadly have a causal effect
on T2D.

• There was evidence for a positive fully or partially genetically causal effect of BMI on triglyc-
erides, consistent with results using MR38 and bidirectional MR.11 There was also evidence
for a positive genetically causal effect of LDL on the self-reported high cholesterol phenotype,
consistent with LDL cholesterol representing one component of this compound phenotype.

• There was evidence for fully or partially genetically causal effects of several traits on various
platelet phenotypes: large negative effects on platelet count for platelet distribution width
and platelet volume, and effects of triglycerides and HDL on platelet distribution width.

• It has been suggested that height has a causal effect on educational attainment.71 While our
results support a partially genetically causal effect, the low gcp estimate ( ˆgcp = 0.33(0.10))
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suggests shared developmental pathways rather than direct causality, highlighting the benefit
of our non dichotomous approach to causal inference. There was a similar result for age at
menarche and height, which was previously reported using Bidirectional MR.11

3.2 Negative results

Several causal or plausibly causal relationships were not identified by LCV (Supplementary Ta-
ble 14). We note that non-significant LCV p-values do not constitute evidence against a causal
effect. (Confidently low gcp estimates do constitute evidence against a causal effect, but LCV did
not produce confidently low gcp estimates for most trait pairs discussed below; Supplementary
Table 14). First, LCV did not identify a causal effect of BMI on T2D, due to two outlier loci that
do not support a causal effect. After applying an outlier removal procedure to remove these loci
(see Online Methods), LCV provides convincing evidence for a fully or partially genetically causal
effect (p = 9×10−6). Pleiotropic outlier loci can cause LCV to produce false negatives (but not false
positives, as our use of a block-jackknife to estimate statistical significance ensures that significant
evidence of partial genetic causality will never be based on a single large-effect locus); however,
this phenomenon appears to be uncommon (Supplementary Table 16), and we generally do not
recommend removing outlier loci because they may contain valuable information. Second, LCV
did not identify a causal effect of asthma on pulmonary function (FVC or FEV1/FVC). A possible
explanation is diagnosis bias: if individuals with low pulmonary function (for reasons unrelated to
asthma) are more likely to be diagnosed with asthma, then this bias would mask the causal effect
of asthma on pulmonary function. Third, LCV did not identify a causal effect of smoking status
on pulmonary function or MI. A possible explanation is that many SNPs affect smoking status
only indirectly, with a primary effect on smoking heaviness or deepness of inhalation.59 Such SNPs
would have much larger effects on cardiopulmonary traits than would be expected based on their
effect on smoking status. This type of pleiotropy causes LCV to have lower power (Supplementary
Figure 1f). Fourth, LCV did not identify a causal effect of anorexia on BMI. A possible explanation
is the high polygenicity of anorexia, as LCV has lower power when the polygenicity of the causal
trait is high (Supplementary Table 3e). We note that for most of the trait pairs described above,
Bidirectional MR also did not detect a causal effect (Supplementary Table 15).

4 Auxiliary test for partial genetic causality

4.1 Overview of method

Partial genetic causality is well-defined without any type of model assumption (see Online Methods).
In order to test for partial genetic causality without using model assumptions, we use an auxiliary
test that directly estimates the correlated mixture component of the bivariate distribution of SNP
effect sizes and compares the proportion of heritability explained by this correlated component
for each trait. This estimate is transformed into an estimate of the distribution of the correlated
genetic component using a heuristic, and we compute the difference between the variances of this
bivariate distribution. If the estimated correlated component explains a greater proportion of
variance (heritability) for trait 1 than for trait 2, it suggests that trait 1 is partially genetically
causal for trait 2. We use a block jackknife to determine whether this difference is significantly
different from zero.
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In order to estimate the bivariate SNP effect size distribution f(x1, x2), we utilize a kernel
estimator, which can be thought of as a smoothed scatter plot. Each SNP is replaced with a
bivariate Gaussian centered at the estimated effect sizes for that SNP:

f̂(x1, x2) =
1

Z

M

∑
1

wiφ(
x1 − α̂i1
σ1

,
x2 − α̂i2
σ2

), (8)

where φ(x, y) is the bivariate Gaussian density with mean 0 and variance I. The variance of these
Gaussians can be thought of as a smoothing parameter, with larger variance corresponding to more
smoothing. We choose σ2

1 = 1/N2 and σ2
2 = 1/N1, or substituting the LD score intercept divided

by N instead of 1/N . By using the sampling variance for trait 1 as the smoothing parameter for
trait 2 and vice versa, we attempt to reduce the amount of bias that results from unequal sample size
between the two traits (however, this approach is not fully successful; see below). These Gaussians
are weighted using the same weights as LCV, and we evaluate the density on a grid.

In order to transform the estimated effect size distribution f into an estimate of the distribution
of the correlated genetic component, g, we use the following heuristic:

g(x1, y) ≈ f(x1, x2) + f(−x1,−x2) − f(−x1, x2) − f(x1,−x2). (9)

This transformation corresponds to a decomposition of f into two mixture components: g, and an
even mixture component. In contrast, the correlated genetic component is defined as an additive
component of the effect size distribution; in general, the mixture of two distributions is not the same
as their sum. For two independent sparse distributions, however, their sum can be approximated
by their mixture, and this fact motivates equation (9).

After obtaining an estimate ĝ of the distribution of the correlated genetic component, we com-
pute its variances: V̂k = ∫ x2

kĝ(x1, x2)dx1dx2. We compute the significance of the statistic V1 − V2

using a block jackknife with 100 blocks to estimate its standard error, together with a single-tailed
Z test.

4.2 Performance in Simulations

We evaluated the auxiliary test in simulations without LD (Tables 2-5). We found that it has
significant limitations. First, it produces false positives in null simulations with unequal power
between the two traits (Supplementary Table 2k-m), and also to a lesser extent in simulations with
unequal polygenicity between the traits (Supplementary Table 2h-j). Second, while it generally had
power comparable to LCV, in some simulations it had substantially lower power (Supplementary
Table 3b-c,n-o); these simulations appear to understate the difference in power between the auxiliary
test and LCV, as the auxiliary test had much lower power when applied to real data.

We evaluated the auxiliary test in challenging simulations involving multiple intermediaries with
unequal polygenicity; these simulations, which constitute proportionality violations, caused LCV
to produce false positives (see Simulations with no LD: LCV model violations). While the auxiliary
test did have an inflated false positive rate, it was less inflated than LCV (Supplementary Table 5b-
d). When we increased the sample size from N = 100k to N = 500k (many of our real datasets have
N = 460k), we found that the auxiliary test was far less likely to produce false positives, while LCV
was no less likely.

Given the limitations of the auxiliary test, we strongly recommend against using it as a stan-
dalone test for partial causality, and we also do not recommend using it as a sensitivity analysis
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for LCV. However, it can be used to provide some aggregate replication of LCV results, as at large
sample size it produces false positives under orthogonal conditions as LCV does. Results of the
auxiliary test on trait pairs that were significant using LCV are listed in Supplementary Table 11,
and results on all 429 genetically correlated trait pairs are provided in Supplementary Table 12.

4.3 Application to real data

We applied the auxiliary test to the 30 trait pairs with high gcp estimates, finding that the estimated
direction of effect was concordant with LCV for 30/30 trait pairs (Supplementary Table 11). While
the auxiliary test replicated the LCV result at a nominal significance level (single-tailed p < 0.05)
for only 17/30 trait pairs, the fraction 17/30 is expected to be an underestimate of the true positive
rate, due to limited power. Indeed, when we applied the auxiliary test to the remaining 394 trait
pairs, it produced positive results at the corresponding significance level (two-tailed p < 0.10) for
only 41/394 trait pairs (39 expected under the null; includes 7/29 trait pairs that LCV reported as
significant with ˆgcp < 0.6; Supplementary Table 12). This analysis confirms that the 30 trait pairs
reported in Table 1 are extremely unlikely to be false positives.

5 Limitations

In addition to the two limitations listed in the Discussion section, this study has several other
limitations. First, LCV can be susceptible to false negatives due to outlier loci, bias in disease
diagnosis, strong pleiotropic effects, or a highly polygenic causal trait (Supplementary Table 14).
However, LCV is well-powered to detect a causal effect in most simulations (Figure 3), and it detects
many established causal relationships among real traits with very high statistical significance (Table
1). Second, LCV is not currently applicable to traits with small sample size and/or heritability, due
to low power as well as incorrect calibration. However, GWAS summary statistics at large sample
sizes have become publicly available for increasing numbers of diseases and traits, including UK
Biobank traits.29 Third, the LCV model can be confounded by shared population stratification,
so it is critical for association statistics to be corrected for stratification. Fourth, while many trait
pairs have high gcp estimates ( ˆgcp > 0.6), it is not clear whether most of these trait pairs reflect
fully or partially genetically causal relationships. A gcp of 1 and a gcp of ∼0.6 would be interpreted
differently, as a gcp of ∼0.6 suggests that only some interventions on trait 1 will modify trait 2,
depending on their mechanism of action. This type of uncertainty can be reduced at higher sample
size, but not eliminated entirely. Fifth, even full genetic causality must be interpreted with caution
before designing disease interventions, as interventions may fail to mimic genetic perturbations. For
example, factors affecting a developmental phenotype such as height might need to be modified at
the correct developmental time point in order to have any effect; this limitation broadly applies to all
methods for inferring causality using genetic data. Sixth, LCV does not model LD explicitly (unlike
cross-trait LD score regression16), and consequently it models the marginal, rather than the causal,
effect size distribution. Modeling the causal effect size distribution while explicitly accounting
for LD would enable LCV analyses to be conditioned on various functional annotations, enabling
models involving different shared genetic components such as SNPs linked to gene regulation in
different cell types. Seventh, power might also be increased by including rare and low-frequency
variants; even though these SNPs explain less complex trait heritability than common SNPs,20,61

they may contribute significantly to power if the genetic architecture among these SNPs is more
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sparse than among common SNPs. Eighth, we cannot infer whether inferred causal effects are
linear. For example, it is plausible that BMI would have a small effect on MI risk for low-BMI
individuals and a large effect for high-BMI individuals, but this type of nonlinearity cannot be
gleaned from summary statistics (unless MI summary statistics were stratified by BMI). Ninth,
MR-style analyses have been applied to gene expression,62–64 and the potential for confounding
due to pleiotropy in these studies could possibly motivate the use of LCV in this setting, but
LCV is not applicable to molecular traits, which may be insufficiently polygenic for the LCV
random-effects model to be well-powered. Finally, we have not exhaustively benchmarked LCV
against every published MR method, but have restricted our simulations to the most widely used
MR methods.5,7–11 We note that there exist additional methods that aim to improve robustness
by excluding or effectively down-weighting variants whose causal effect estimates appear to be
outliers,6,12 conceptually similar to the weighted median8 and mode-based estimator;10 however,
we believe that any method that relies on genome-wide significant SNPs for a single one trait is
likely to be confounded by genetic correlations (Figure 2). We further note that MR should ideally
be applied to carefully curated sets of genetic variants that aim to exclude pleiotropic effects (MR
with curation), but that curated sets of genetic variants are unavailable for most complex traits;
in particular, it is difficult to compare LCV to MR with curation, as the performance of MR with
curation will strongly depend on the quality of information used for curation, which can vary in
practice.

6 Identifiability

We ask when q2 is identifiable: under what conditions is there only one value (q2
1, q

2
2) that produces

the joint distribution A of (α1, α2), for any choice of the distribution B of (π, γ1, γ2)? It is possible
that q2

1 and q2
2 are not identifiable: for example, if A is multivariate Normal, then the relationship

between α1 and α2 is fully parameterized by their correlation, and there is no asymmetry that can
be exploited in order to separate q2

1 from q2
2. In main text equation (2), κ = 0 and no information

is gleaned from the mixed fourth moments.
Interestingly, the Gaussian case is the only non-identifiable case. The following proposition

asserts that the LCV model is identifiable under an independence assumption if and only if π does
not follow a normal distribution. It does not matter what the marginal distributions of γ1 and
γ2 are. This result echoes similar results in Independent Components Analysis,68 which separates
independent, additive signals exploiting non-Gaussianity. We note that there exist identifiable
cases under which our method will not be able to estimate q2: our moments-based estimator makes
assumptions about the joint distribution of (π, γ1, γ2) that are weaker than independence, and as
a result, our estimator requires a slightly stronger identifiability assumption than non-Gaussianity,
namely that E(π4) − 3 ≠ 0. If π does follow a Gaussian distribution, then LCV will have no power
to estimate gcp or to identify a causal effect, but it will not lead to false positives or to confident
false negatives (see Supplementary Table 6bb).

Proposition 1. Assume that γ1, γ2, π are independently distributed, with joint distribution B. Let
A(B, q) be the joint distribution on α for some choice of q. Then q is uniquely determined, up to
sign flipping, by A if and only if the marginal distribution of π is non-Gaussian.
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Proof. The characteristic functions for B and A are:

φB(s1, s2, s3) =E(exp(i(s1γ1 + s2γ2 + s3π))),
φA(s1, s2) =E(exp(i(s1β1 + s2β2))).

Because αk = qkπ + γk,
φA(s1, s2) = φB(s1, s2, q1s1 + q2s2).

By the independence assumption, φB factors:

φD(s1, s2, q1s1 + q2s2) = a1(s1)a2(s2)b(q1s1 + q2s2).

Now, suppose that there is some other q′1, q
′
2 and some φB′ (which also factors) such that:

φD(s1, s2, q1s1 + q2s2) = φB′(s1, s2, q
′
1s1 + q′2s2).

Without loss of generality, q′1 = rq1 and q′2 = q2/r, since q1q2 is the genetic correlation. Factoring
φB′ , there exists b′ such that

∀s1, s2, b(q1s1 + q2s2)∝ b′(q1s1r + q2s2/r),

where ∝ hides factors of the form a(s1) and a(s2). Now, either r = ±1, or for some imaginary scalar
z,

b(q1s1 + q2s2)∝ exp(z(q1s1 + q2s2)2)∝ exp(zq1s1q2s2)∝ exp(z(q1s1r + q2s2/r)2).

(z must be imaginary in order to have a valid characteristic function). This is precisely the form
of the Normal characteristic function:

φN(µ,σ2)(s) = exp(iµs) exp(i(σs)2/2)

so π must be Normally distributed.
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